Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
In a triangle A B C, if angle A= angle B=(1/2)( sin -1((√6+1/2 √3))+ sin -1((1/√3))) and c=6 ⋅ 3(1/4), then find the area of triangle ABC.
Q. In a
△
A
BC
, if
∠
A
=
∠
B
=
2
1
(
sin
−
1
(
2
3
6
+
1
)
+
sin
−
1
(
3
1
)
)
and
c
=
6
⋅
3
4
1
, then find the area of
△
A
BC
.
384
121
Inverse Trigonometric Functions
Report Error
Answer:
27
Solution:
x
2
=
12
−
(
7
+
2
5
)
=
5
−
2
6
x
2
=
(
3
−
2
)
2
⇒
x
=
(
3
−
2
)
Hence
θ
=
tan
−
1
(
3
−
2
1
+
2
3
)
+
tan
−
1
2
1
θ
=
2
π
−
tan
−
1
(
1
+
2
3
3
−
2
)
+
tan
−
1
2
1
=
2
π
−
(
tan
−
1
3
−
tan
−
1
2
)
+
cot
−
1
2
=
π
−
3
π
=
3
2
π
Hence
∠
A
=
∠
B
=
2
1
(
3
2
π
)
=
3
π
∴
∠
C
=
3
π
So,
△
A
BC
is equilateral.
Hence area
(
△
A
BC
)
=
4
3
c
2
=
4
3
(
6
⋅
3
4
1
)
2
=
27