Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
In a triangle A B C, angle C=90°, then (a2-b2/a2+b2) is equal to :
Q. In a triangle
A
BC
,
∠
C
=
9
0
∘
, then
a
2
+
b
2
a
2
−
b
2
is equal to :
3891
194
MHT CET
MHT CET 2020
Report Error
A
sin
(
A
+
B
)
B
sin
(
A
−
B
)
C
cos
(
A
+
B
)
D
sin
(
2
A
−
B
)
Solution:
A
+
B
=
18
0
∘
−
C
=
9
0
∘
a
=
2
R
sin
A
,
b
=
2
R
sin
B
,
c
=
2
R
sin
C
∴
a
2
+
b
2
a
2
−
b
2
=
s
i
n
2
A
+
s
i
n
2
B
s
i
n
2
A
−
s
i
n
2
B
=
s
i
n
2
A
+
s
i
n
2
(
9
0
∘
−
A
)
s
i
n
(
A
+
B
)
s
i
n
(
A
−
B
)
[
∵
A
+
B
=
9
0
∘
]
=
s
i
n
2
A
+
c
o
s
2
A
s
i
n
9
0
∘
s
i
n
(
A
−
B
)
=
sin
(
A
−
B
)