Q.
In a right-angled triangle, the sides are a,b and c, with c as hypotenuse, and c−b=1,c+b=1. Then the value of (logc+ba+logc−ba)/(2logc+ba×logc−ba) will be
Since the triangle is right angle ∴c2=a2+b2 ⇒c2−b2=a2 2logc+ba×logc−ba[logc+ba+logc−ba] =2log(1+b)loga⋅log(c−b)logalog(c+b)loga+log[c−b]loga [∵logab=logalogb] =2(loga)2loga[log(c+b)+log(c−b)] =2logalog(c+b)(c−b) =loga2log(c2−b2) =loga2loga2 using Eq. (i) =1