Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
In a ||gm ABCD;|AB|=a,|AD|=b and |AC|=c. Then DB .AB has the value
Q. In a
∣∣
g
m
A
BC
D
;
∣
A
B
∣
=
a
,
∣
A
D
∣
=
b
and
∣
A
C
∣
=
c
.
Then
D
B
.
A
B
has the value
1082
167
Vector Algebra
Report Error
A
2
3
a
2
+
b
2
−
c
2
14%
B
2
a
2
+
3
b
2
−
c
2
29%
C
2
a
2
−
b
2
+
3
c
2
43%
D
2
a
2
+
3
b
2
+
c
2
14%
Solution:
Since
D
B
=
D
A
+
A
B
∴
D
B
=
D
B
−
A
B
[
Hence
A
B
=
a
,
A
D
=
b
,
A
C
=
c
]
∴
(
D
A
)
2
+
(
D
B
)
2
+
(
A
B
)
2
−
2
D
B
⋅
A
B
…
(
1
)
Also in the
∣
∣
g
m
2
(
a
2
+
b
2
)
=
c
2
+
D
B
2
∴
D
B
2
=
2
a
2
+
2
b
2
−
c
2
Putting in
(
1
)
,
b
2
=
2
a
2
+
2
b
2
−
c
2
+
a
2
−
2
A
B
⋅
D
B
∴
A
B
⋅
D
B
=
2
3
a
2
+
b
2
−
c
2