Thank you for reporting, we will resolve it shortly
Q.
In a $||gm\,ABCD;|\overrightarrow{AB}|=a,|\overrightarrow{AD}|=b $ and $|AC|=c.$ Then $\overrightarrow{DB}\,.\overrightarrow{AB}$ has the value
Vector Algebra
Solution:
Since $\overrightarrow{DB}=\overrightarrow{DA}+\overrightarrow{AB}$
$\therefore \overrightarrow{DB}=\overrightarrow{DB}-\overrightarrow{AB}$
$[$Hence $\overrightarrow{AB}=\vec{a}, \overrightarrow{AD}=\vec{b}, \overrightarrow{AC}=\vec{c}]$
$\therefore \left(\overrightarrow{DA}\right)^{2}+\left(\overrightarrow{DB}\right)^{2}+\left(\overrightarrow{AB}\right)^{2}-2\,\overrightarrow{DB}\cdot\overrightarrow{AB}\quad\ldots\left(1\right)$
Also in the $\left|\right| gm$
$2\left(a^{2}+b^{2}\right)=c^{2}+\overrightarrow{DB^{2}}$
$\therefore \overrightarrow{DB^{2}}=2a^{2}+2b^{2}-c^{2}$
Putting in $\left(1\right)$,
$b^{2}=2a^{2}+2b^{2}-c^{2}+a^{2}-2\,\overrightarrow{AB}\cdot\overrightarrow{DB}$
$\therefore \overrightarrow{AB}\cdot\overrightarrow{DB}=\frac{3a^{2}+b^{2}-c^{2}}{2}$