We have r1=2r2=3r3 ⇒s−aΔ=(s−b)2Δ=(s−c)3Δ ⇒s−b=2(s−a) and (s−c)=3(s−a)
Taking s−b=2(s−a) ⇒2a+b+c−b=2(2a+b+c−a) [∵s=2a+b+c] ⇒a+c−b=2(−a+b+c) ⇒3a−c−3b=0 ⇒3a−3b+c…(i)
Now, taking (s−c)=3(s−a) ⇒2a+b+c−c=3(2a+b+c−a) ⇒a+b−c=3(−a+b+c) ⇒4a−2b−4c=0 ⇒4a=2b+4c ⇒2a=b+2c…(ii)
From Eqs. (i) and (ii), we get 6a=6b+2a−b ⇒4a=5b ⇒ba=45