Let a triangle ABC of sides a,b,c, having area Delta
Area =Δ 21bcsinA=Δ… (i)
and 21acsinB=Δ… (ii)
and 21absinc=Δ… (iii)
Using cosine rule a2=b2+c2−2bccosA
and b2=a2+c2−2accosB
and c2=a2+b2−2abcosC
On adding, we get a2+b2+c2=2a2+2b2+2c2−2abcosC−2accosB−2bccosA
or a2+b2+c2=2(abcosC+accosB+bccosA)… (iv)
Now, from Eq. (i) bc=sinA2Δ
Eq. (ii), ac=sinB2Δ
Eq. (iii), ab=sinC2Δ
Putting these values in Eq. (iv), we get a2+b2+c2=2(sinC2ΔcosC+sinB2ΔcosB+sinA2ΔcosA) a2+b2+c2=4Δ(cotC+cotB+cotA)
or cotC+cotB+cotA=4Δa2+b2+c2
or cotA+cotB+cotC=4Δa2+b2+c2