Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If z = x + iy, z1/3 = a - ib, then (x/a) - (y/b) = k (a2 - b2) where k is equal to
Q. If
z
=
x
+
i
y
,
z
1/3
=
a
−
ib
, then
a
x
−
b
y
=
k
(
a
2
−
b
2
)
where
k
is equal to
1521
248
BITSAT
BITSAT 2014
Report Error
A
1
0%
B
2
100%
C
3
0%
D
4
0%
Solution:
z
1/3
=
a
−
ib
⇒
z
=
(
a
−
ib
)
3
∴
x
+
i
y
=
a
3
+
i
b
3
−
3
i
a
2
b
−
3
a
b
2
⇒
x
=
a
3
−
3
a
b
2
⇒
a
x
=
a
2
−
3
b
2
and
y
=
b
3
−
3
a
2
b
⇒
b
y
=
b
2
−
3
a
2
So,
a
x
−
b
y
=
4
(
a
2
−
b
2
)