Q.
If z=x+iy,∀x,y∈R,i2=−1,xy=0 and ∣z∣=2, then the imaginary part of z−2z+2 cannot be
2293
232
NTA AbhyasNTA Abhyas 2020Complex Numbers and Quadratic Equations
Report Error
Solution:
Given, ∣z∣=2⇒x2+y2=4&xy=0
Let, z=x+iy=2(cosθ+isinθ)
So, z−2z+2=(x−2)+iy(x+2)+iy =(x−2)2+y2(x2+y2−4)+i(y(x−2)−y(x+2))=8−4x−4yi
So, the imaginary part =−8−4x4y=x−2y =2−2cosθ−2sinθ=−cot2θ,θ∈(0,2π)
Now, θ=2π,π,23π⇒cot2θ=−1,0,1