Given, z=x−iy and z31=a+ib z1/3=a+ib
Take cube on both sides, we get (z1/3)3=(a+ib)3 ⇒z=a3+(ib)3+3a2ib+3a(ib)2 ⇒z=a3+i3b3+3a2ib+3ab2i2 ⇒z=a3−ib3+3a2bi−3ab2 [∵i2=−1] ⇒z=(a3−3ab2)−i(b3−3a2b) ⇒x−iy=(a3−3ab2)−i(b3−3a2b) [∵z=x−iy]
Here, x=a3−3ab2 and y=b3−3a2b
Now, a2+b2(ax+by)=a2+b2(aa3−3ab2+bb3−3a2b) =a2+b2a2−3b2+b2−3a2 =a2+b2−2a2−2b2=a2+b2−2(a2+b2)=−2