We have, arg(z−3iz−1)=2π ⇒arg(z−1)−arg(z−3i)=2π ⇒arg[(x−1)+iy]−arg[x+(y−3)i]=2π ⇒tan−1x−1y−tan−1xy−3=2π ⇒tan−1[1+x−1y⋅xy−3x−1y−xy−3]=2π ⇒x(x−1)+y(x−3)xy−(x−1)(x−3)=tan2π ⇒x(x−1)+y(y−3)xy−(x−1)(y−3)=01 ⇒x(x−1)+y(y−3)=0 ⇒x2+y2−x−3y=0 ⇒(x−21)2+(y−23)2=41+49 ⇒(x−21)2+(y−23)2=(210)2
Which is a circle with centre (21,23) and radius 210. ∴z∈C:(3−i)z+(3+i)zˉ−6>0,∣∣z−21+3i∣∣=210