Q.
If z&ω are two complex numbers, simultaneously satisfying the equation z3+ω5=0 & z2ωˉ4=1 then
1878
219
Complex Numbers and Quadratic Equations
Report Error
Solution:
Given, z2−ωˉ4=1 ⇒∣z∣6=∣ωˉ∣41=∣ω∣41(∵∣ωˉ∣=∣ω∣) ∴∣z∣6=(∣ωˉ1∣)12=(∣ω∣1)12...(i)
Again , z3+ω5=0 ⇒z63=−ω5 ⇒∣z∣6=∣ω∣10....(ii)
From (i) & (ii) we have ∣ω∣=∣z∣=1 ∴ωωˉ=zzˉ=1
Again z6=(−ω5)2=ω10
and z2(ωˉ)4=1 ⇒z6(ωˉ)12=1 ⇒ω10(ωˉ)12=1 ⇒(ωωˉ)10(ωˉ)2=1 ⇒(ωˉ)2=1 ⇒ω=±1 i.e., ω=1,−1
Now if ω=−1 then z3−1=0 ⇒(z−1)(z2++1)=0 ⇒z=1
If ω=1 then z3+1=0 ⇒(z+1)(z2−z+1)=0 ⇒z=−1
Thus z=1&ω=−1 or z=−1,ω=1 ⇒z&ω both are purely real numbers.