Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If z= log ( tan x+ tan y), then ( sin 2 x) ( partial z/ partial x)+( sin 2 y) ( partial z/ partial y) is equal to
Q. If
z
=
lo
g
(
tan
x
+
tan
y
)
, then
(
sin
2
x
)
∂
x
∂
z
+
(
sin
2
y
)
∂
y
∂
z
is equal to
1654
212
EAMCET
EAMCET 2007
Report Error
A
1
B
2
C
3
D
4
Solution:
z
=
lo
g
(
tan
x
+
tan
y
)
On differentiating partially w.r.t.
x
and
y
, we get
∂
x
∂
z
=
t
a
n
x
+
t
a
n
y
1
⋅
s
e
c
2
x
and
∂
y
∂
z
=
t
a
n
x
+
t
a
n
y
s
e
c
2
y
Now,
sin
2
x
∂
x
∂
z
+
sin
2
y
∂
y
∂
z
=
t
a
n
x
+
t
a
n
y
s
i
n
2
x
s
e
c
2
x
+
s
i
n
2
y
s
e
c
2
y
=
t
a
n
x
+
t
a
n
y
2
s
i
n
x
c
o
s
x
⋅
c
o
s
2
x
1
+
2
s
i
n
y
c
o
s
y
⋅
c
o
s
2
y
1
=
t
a
n
x
+
t
a
n
y
2
[
t
a
n
x
+
t
a
n
y
]
=
2