Q.
If z is a complex number such that z+∣z∣=8+12i then the value of ∣∣z2∣∣ is equal to
2212
188
KEAMKEAM 2013Complex Numbers and Quadratic Equations
Report Error
Solution:
Let z=x+iy
Then, we have z+∣z∣=8+12i ⇒(x+iy)+∣x+iy∣=8+12i ⇒(x+x2+y2)+iy=8+12i
On comparing the real and imaginary part, we get
and y=12
and x+x2+y2=8 ⇒x2+144=8−x
On squaring both sides, we get x2+144=64+x2−16x ⇒16x=−80 ⇒x=−5 ∴z=x+iy=−5+i⋅12
Then, ∣z∣=25+144=169=13 ⇒∣z∣2=169 ⇒∣∣z2∣∣=169 (∵∣zn∣=∣z∣n)