Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If z is a complex number satisfying z4+z3+2 z2+z+1=0, then the set of possible values of |z| is
Q. If
z
is a complex number satisfying
z
4
+
z
3
+
2
z
2
+
z
+
1
=
0
, then the set of possible values of
∣
z
∣
is
56
177
Complex Numbers and Quadratic Equations
Report Error
A
{
1
,
2
}
B
{
1
}
C
{
1
,
2
,
3
}
D
{
1
,
2
,
3
,
4
}
Solution:
The given equation is
(
z
2
+
z
+
1
)
(
z
2
+
1
)
=
0
⇒
z
=
±
i
,
ω
,
ω
2
;
where
ω
being an imaginary cube root of unity.
Thus
∣
z
∣
=
1
.