Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If z is a complex number satisfying z2+(3/z2)=-4 , then the sum of the absolute values of the imaginary parts of the roots of the equation is
Q. If
z
is a complex number satisfying
z
2
+
z
2
3
=
−
4
, then the sum of the absolute values of the imaginary parts of the roots of the equation is
3075
189
NTA Abhyas
NTA Abhyas 2020
Complex Numbers and Quadratic Equations
Report Error
A
0
B
2
3
C
2
D
2
3
+
2
Solution:
z
4
+
4
z
2
+
3
=
0
(
z
2
+
1
)
(
z
2
+
3
)
=
0
⇒
z
2
=
−
1
or
−
3
⇒
z
=
±
i
,
±
3
i
Hence, the required sum is
∣
1
∣
+
∣
−
1
∣
+
∣
∣
3
∣
∣
+
∣
∣
−
3
∣
∣