Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If z=e2π i/3 , then 1+z+3z2+2z4+2z4+3z5 is equal to
Q. If
z
=
e
2
πi
/3
, then
1
+
z
+
3
z
2
+
2
z
4
+
2
z
4
+
3
z
5
is equal to
2419
224
Complex Numbers and Quadratic Equations
Report Error
A
−
3
πi
/3
22%
B
3
e
πi
/3
26%
C
3
e
2
πi
/3
26%
D
−
3
e
πi
/3
26%
Solution:
e
2
πi
/3
=
cos
3
2
π
+
3
i
s
in
2
π
=
ω
Now,
1
+
z
+
3
z
2
+
2
z
3
+
2
z
4
+
3
z
5
=
1
+
ω
+
3
ω
2
+
2
ω
3
+
2
ω
4
+
3
ω
5
=
1
+
ω
+
3
ω
2
+
2
+
2
ω
+
3
ω
2
=
3
+
3
ω
+
6
ω
2
=
3
(
1
+
ω
+
ω
2
)
+
3
ω
2
=
3
ω
2
=
3
e
4
π
/3
=
3
(
cos
3
4
π
+
i
s
in
3
4
π
)
=
3
[
cos
(
π
+
3
π
)
+
i
s
in
(
π
+
3
π
)
]
=
3
[
−
cos
3
π
i
s
in
3
π
]
=
−
3
e
iπ
/3