It is given that z=cosα+isinα,0<α<4π
So, 1−z31+z4=1−(cosα+isinα)31+(cosα+isinα)4 =1−cos3α−isin3α1+cos4α+isin4α (by De-Moivre's theorem) =2sin223α−2isin23αcos23α2cos22α+2isin2αcos2α =2sin23α2cos2α×(sin23α−icos23α)(cos2α+isin2α) ∴∣∣1−z31+z4∣∣=sin23αcos2α{ as ∣cosθ+isinθ∣=1}