Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If z= cos 6°+i sin 6° then displaystyle∑20n=1 Im (z2n-1) =
Q. If
z
=
cos
6
∘
+
i
sin
6
∘
then
n
=
1
∑
20
I
m
(
z
2
n
−
1
)
=
1793
180
AP EAMCET
AP EAMCET 2019
Report Error
A
0
0%
B
−
1
0%
C
4
s
i
n
6
∘
−
3
100%
D
4
s
i
n
6
∘
3
0%
Solution:
∵
n
=
1
∑
20
z
2
n
−
1
=
z
+
z
3
+
z
5
+
…
+
z
39
Now,
z
=
cos
6
∘
+
i
sin
6
∘
=
e
i
6
∘
∴
n
=
1
∑
20
z
2
n
−
1
=
e
i
6
∘
+
e
i
1
8
∘
+
e
i
3
0
∘
+
…
+
e
i
(
39
×
69
=
e
i
6
∘
[
1
+
e
i
12
+
e
i
24
+
…
+
e
i
228
]
=
e
i
6
[
e
i
12
−
1
e
i
240
−
1
]
=
e
i
6
(
2
i
s
i
n
6
∘
)
e
i
6
[
−
2
1
−
2
3
i
−
1
]
=
2
i
s
i
n
6
∘
−
2
3
−
2
3
i
=
−
4
s
i
n
6
∘
3
+
4
s
i
n
6
∘
3
i
∴
n
=
1
∑
20
I
m
(
z
2
n
−
1
)
=
4
sin
6
∘
3