Given, ∣z−3∣∣z−2∣=2 ⇒∣z−2∣=2∣z−3∣ ⇒(x−2)2+y2=2(x−3)2+y2 ⇒(x−2)2+y2=4[(x−3)2+y2] (on squaring both sides) ⇒x2+y2−4x+4=4x2+4y2+36−24x ⇒3x2+3y2−20x+32=0
or x2+y2−320x+332=0 ... (i)
We know that, standard equation of a circle is x2+y2+2gx+2fy+c=0 ... (ii)
On comparing Eqs. (i) and (ii), we get 2g=3−20⇒g=3−10,f=0,c=332
Hence, radius =g2+f2−c =9100−332=94=32