1702
194
Complex Numbers and Quadratic Equations
Report Error
Solution:
We have, z2−2zcosθ+1=0 ⇒z=22cosθ±4cos2θ−4 =cosθ±cos2θ−1 =cosθ±−sin2θ =cosθ±i2sin2θ =cosθ±isinθ
When z=cosθ+isinθ z2+z−2=cos2θ+isin2θ+(cos2θ−isin2θ) =2cos2θ
and when z=cosθ−isinθ z2+z−2=cos2θ−isin2θ+cos2θ+isin2θ =2cos2θ