Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If z=√2 √1+√3 i represents a point P in the argand plane and P lies in the third quadrant, then the polar form of z is
Q. If
z
=
2
1
+
3
i
represents a point
P
in the argand plane and
P
lies in the third quadrant, then the polar form of
z
is
1374
227
TS EAMCET 2019
Report Error
A
2
[
cos
(
3
−
4
π
)
+
i
sin
(
3
−
4
π
)
]
B
2
[
cos
(
6
−
5
π
)
+
i
sin
(
6
−
5
π
)
]
C
2
[
cos
(
6
−
π
)
+
i
sin
(
6
−
π
)
]
D
2
[
cos
(
3
−
2
π
)
+
i
sin
(
3
−
2
π
)
]
Solution:
We have,
z
=
2
1
+
3
i
⇒
z
=
2
+
2
3
i
z
=
(
3
+
i
)
2
⇒
z
=
±
(
3
+
i
)
z
lie in third quadrant
∴
z
=
−
3
−
i
⇒
∣
z
∣
=
(
−
3
)
2
+
(
−
1
)
2
=
3
+
1
=
4
=
2
and
tan
θ
=
∣
∣
−
3
−
1
∣
∣
=
3
1
⇒
θ
=
6
π
Since
θ
lie in 3 rd quadrant
∴
ar
g
(
z
)
=
−
(
π
−
6
π
)
=
−
6
5
π
Hence
z
=
2
(
cos
(
6
−
5
π
)
+
i
sin
(
6
−
5
π
)
)