Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If z1, z2, z3 are three points lying on the circle |z|=2 then the minimum value of |z1+z2|2+|z2+z3|2+ |z3+z1|2 is equal to
Q. If
z
1
,
z
2
,
z
3
are three points lying on the circle
∣
z
∣
=
2
then the minimum value of
∣
z
1
+
z
2
∣
2
+
∣
z
2
+
z
3
∣
2
+
∣
z
3
+
z
1
∣
2
is equal to
1802
276
Complex Numbers and Quadratic Equations
Report Error
A
6
B
12
C
15
D
24
Solution:
∣
z
1
+
z
2
∣
2
+
∣
z
2
+
z
3
∣
2
+
∣
z
3
+
z
1
∣
2
=
2
(
∣
z
1
∣
2
+
∣
z
2
∣
2
+
∣
z
3
∣
2
)
+
(
z
1
z
ˉ
2
+
z
ˉ
1
z
2
+
z
2
z
ˉ
3
+
z
ˉ
2
z
3
+
z
3
z
ˉ
1
+
z
1
z
ˉ
3
)
=
24
+
(
z
1
z
ˉ
2
+
z
ˉ
1
z
2
+
z
2
z
ˉ
3
+
z
ˉ
2
z
3
+
z
3
z
ˉ
1
+
z
3
z
ˉ
1
)
Also,
∣
z
1
+
z
2
+
z
3
∣
2
≥
0
⇒
z
1
z
ˉ
2
+
z
ˉ
1
z
2
+
z
2
z
ˉ
3
+
z
ˉ
2
z
3
+
z
3
z
ˉ
1
+
z
ˉ
3
z
1
≥
−
12
∴
∣
z
1
+
z
2
∣
2
+
∣
z
2
+
z
3
∣
2
+
∣
z
3
+
z
1
∣
2
≥
12