Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If z1, z2, z3 are any three complex numbers such that |z1|=|z2|=|z3|=|(1/z1)+(1/z2)+(1/z3)|=1, then find the value of |z1+z2+z3|.
Q. If
z
1
,
z
2
,
z
3
are any three complex numbers such that
∣
z
1
∣
=
∣
z
2
∣
=
∣
z
3
∣
=
∣
∣
z
1
1
+
z
2
1
+
z
3
1
∣
∣
=
1
, then find the value of
∣
z
1
+
z
2
+
z
3
∣
.
3180
240
Complex Numbers and Quadratic Equations
Report Error
A
1
34%
B
2
10%
C
3
47%
D
4
10%
Solution:
∣
z
1
∣
=
∣
z
2
∣
=
∣
z
3
∣
=
1
⇒
∣
z
1
∣
2
=
∣
z
2
∣
2
=
∣
z
3
∣
2
=
1
⇒
z
1
z
ˉ
1
=
z
2
z
ˉ
2
=
z
3
z
ˉ
3
=
1
⇒
z
ˉ
1
=
z
1
1
,
z
ˉ
2
=
z
2
1
,
z
ˉ
3
=
z
3
1
Given that,
∣
∣
z
1
1
+
z
2
1
+
z
3
1
∣
∣
=
1
⇒
∣
z
ˉ
1
+
z
ˉ
2
+
z
ˉ
3
∣
=
1
⇒
∣
z
1
+
z
2
+
z
3
∣
=
1
⇒
∣
z
1
+
z
2
+
z
3
∣
=
1