Re(z)=∣z−1∣ ⇒x=(x−1)2+(y−0)2(x>0) →y2=2x−1=4⋅21(x−21) ⇒ a parabola with focus (1,0) & directrix as imaginary axis ∴ Vertex =(21,0) A(z1) & B(z2) are two points on it such that
slope of AB=tan6π=31 (arg(z1−z2)=6π)
for y2=4ax
Let A(at12,2at1) & B(at22,2at2) mAB=t1+t22=y1+y24a=31 ( Here a=21) ⇒y1+y2=4a3=23