Q.
If z1,z2 and z3 are 3 distinct complex numbers such that ∣z1−z2∣3=∣z2−z3∣5=∣z3−z1∣7 , then the value of z1−z29+z2−z325+z3−z149 is equal to
5129
218
NTA AbhyasNTA Abhyas 2020Complex Numbers and Quadratic Equations
Report Error
Solution:
Let, ∣z1−z2∣3=∣z2−z3∣5=∣z3−z1∣7=k ∣z1−z2∣29=∣z2−z3∣225=∣z3−z1∣249=k2 ⇒(z1−z2)(zˉ1−zˉ2)9=k2⇒z1−z29=k2(zˉ1−zˉ2)
similarly, (z2−z3)25=k2(zˉ2−zˉ3)
and (z3−z1)49=k2(zˉ3−zˉ1) ⇒z1−z29+z2−z325+z3−z149 =k2(zˉ1−zˉ2+zˉ2−zˉ3+zˉ3−zˉ1)=0