Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If Z1 ≠ 0 and Z2 be two complex numbers such that (Z2/Z1) is a purely imaginary number, then |(2Z1+3Z2/2Z1-3Z2)| is equal to:
Q. If
Z
1
=
0
and
Z
2
be two complex numbers such that
Z
1
Z
2
is a purely imaginary number, then
∣
∣
2
Z
1
−
3
Z
2
2
Z
1
+
3
Z
2
∣
∣
is equal to:
8024
225
JEE Main
JEE Main 2013
Complex Numbers and Quadratic Equations
Report Error
A
2
B
5
C
3
D
1
Solution:
Let
z
1
=
1
+
i
and
z
2
=
1
−
i
z
1
Z
2
=
1
+
i
1
−
i
=
(
1
+
i
)
(
1
−
i
)
(
1
−
i
)
(
1
−
i
)
=
−
i
2
z
1
−
3
z
2
2
z
1
+
3
z
2
=
−
2
−
3
(
z
1
z
2
)
2
+
3
(
z
1
z
2
)
=
2
+
3
i
2
−
3
i
∣
∣
2
z
1
−
3
z
2
2
z
1
+
3
z
2
∣
∣
=
∣
∣
2
+
3
i
2
−
3
i
∣
∣
=
∣
∣
2
+
3
i
2
−
3
i
∣
∣
[
∵
∣
∣
z
2
z
1
∣
∣
=
∣
z
2
∣
∣
z
1
∣
]
=
4
+
9
4
+
9
=
1