Q.
If z1 and z2 are two complex numbers such that ∣z1∣<1<∣z2∣ then ∣∣z1−z21−z1zˉ2∣∣
288
149
Complex Numbers and Quadratic Equations
Report Error
Solution:
Given that ∣z1∣<1<∣z2∣
Let ∣∣z1−z21−z1zˉ2∣∣<1 ⇒∣1−z1zˉ2∣<∣z1−z2∣ ⇒∣1−z1zˉ2∣2<∣z1−z2∣2 ⇒(1−z1zˉ2)(1−z1zˉ2)<(z1−z2)(z1−z2) ⇒(1−z1zˉ2)(1−zˉ1z2)<(z1−z2)(zˉ1−zˉ2) ⇒1−z1zˉ2−zˉ1z2+z1zˉ1z2zˉ2<z1zˉ1−z1zˉ2−zˉ1z2+z2zˉ2 ⇒1+∣z1∣2∣z2∣2<∣z1∣2+∣z2∣2 ⇒(1−∣z1∣2)(1−∣z2∣2)<0
which is obviously true as ∣z1∣<1<∣z2∣ and hence, ∣z1∣2<1<∣z2∣2.