Q.
If z1 and z2 are any two complex numbers, then ∣z1+z12−z22∣+∣z1+z12−z22∣ is equal to
3007
218
Complex Numbers and Quadratic Equations
Report Error
Solution:
We know that ∣z1+z2∣2∣z1−z2∣2=2[∣z1∣2+∣z2∣2…(1)
Now [z1+z12−z22+∣∣z1−z12−z22∣∣]2 =∣∣z1+z12−z22∣∣2+∣∣z1−z12−z22∣∣2 +2∣∣z12−(z12−z22)∣∣ =2∣z1∣2+2∣∣z12−z22∣∣+2∣∣z22∣∣ [By (1)] =2∣z1∣2+2∣z2∣2+2∣z12−z22∣ =∣z1+z2∣2+∣z1−z2∣2+2∣z1+z2∣∣z1−z2∣ =(∣z1+z2∣+∣z1−z2∣)2
Taking square root of both sides, we get ∣∣z1+z12−z22∣∣+∣∣z1−z12−z22∣∣ =∣z1+z2∣+∣z1−z2∣