Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If |z1|=1,|z2|=2,|z3|=3 and |9 z1 z2+4 z1 z3+z2 z3|=12, then the value of |z1+z2+z3| is
Q. If
∣
z
1
∣
=
1
,
∣
z
2
∣
=
2
,
∣
z
3
∣
=
3
and
∣
9
z
1
z
2
+
4
z
1
z
3
+
z
2
z
3
∣
=
12
, then the value of
∣
z
1
+
z
2
+
z
3
∣
is
2634
169
AP EAMCET
AP EAMCET 2016
Report Error
A
3
B
4
C
8
D
2
Solution:
Given,
∣
z
1
∣
=
1
,
∣
z
2
∣
=
2
,
∣
z
3
∣
=
3
and
∣
9
z
1
z
2
+
4
z
1
z
3
+
z
2
z
3
∣
=
12
Now,
∣
9
z
1
z
2
+
4
z
1
z
3
+
z
2
z
3
∣
=
12
⇒
∣
z
3
∣
2
z
1
z
2
+
∣
z
2
∣
2
z
1
z
3
+
∣
z
1
∣
2
z
2
z
3
∣
=
12
⇒
z
3
z
ˉ
3
z
1
z
2
+
z
2
z
ˉ
2
z
1
z
3
+
z
1
z
ˉ
1
z
2
z
3
=
12
[
∵
∣
z
∣
2
=
z
z
ˉ
]
⇒
∣
z
1
z
2
z
3
(
z
ˉ
3
+
z
ˉ
2
+
z
ˉ
1
)
∣
=
12
⇒
∣
z
1
z
2
z
3
∣
∣
z
ˉ
1
+
z
ˉ
2
+
z
ˉ
3
∣
=
12
⇒
∣
z
1
∣
∣
z
2
∣
∣
z
3
∣
∣
z
ˉ
1
+
z
ˉ
2
+
z
ˉ
3
∣
=
12
⇒
1
×
2
×
3
∣
z
ˉ
1
+
z
ˉ
2
+
z
ˉ
3
∣
=
12
⇒
∣
z
ˉ
1
+
z
ˉ
2
+
z
ˉ
3
∣
=
2
∴
∣
z
1
+
z
2
+
z
3
∣
=
2