Let ∣∣y+zy−zz−yx−zz+xz−xx−yy−xx+y∣∣
Applying C1→C1+C2+C3 =∣∣2x2y2zx−zz+xz−xx−yy−xx+y∣∣
Applying R1→R2+R1,R3→R3+R1 =∣∣2x2(x+y)2(z+z)x−z2x0x−y02x∣∣
On expanding we get =2x(4x2)−(x−z)[4x(x+y)]+(x−y)[−4x(x+z)] =8x2−(x−z)(4x2+4xy)−(x−y)(4x2+4xz) =8x3−4x3−4x2y+4zx2+4xyz−4x3−4x2z+4yx2+4xyz =8xyz
Given : A=kxyz⇒8xyz=kxyz⇒k=8