Q.
If y=y(x),x∈(0,2π) be the solution curve of the differential equation
(sin22x)dxdy+(8sin22x+2sin4x)y =2e−4x(2sin2x+cos2x), with y(4π)=e−π,
then y(6π) is equal to:
Given differential equation can be re-written as dxdy+(8+4cot2x)y=sin22x2e−4x(2sinx+cos2x)
which is a linear diff. equation. I.f. =e∫(8+4cot2x)dx=e8x+2Cu(sin2x) =e8x⋅sin22x ∴ solution is y(e8x⋅sin22x)=∫2e4x(2sin2x+cos2x)dx+C =e4x⋅sin2x+C
Given y(4π)=e−π⇒C=0 ∴y=sin2xe−4x ∴y(6π)=sin(2⋅6π)e−4⋅6π=32e−32π