Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If y=y(x) is the solution of the equaiton e textsin y cos y ( dy / dx )+ e textsin y cos x = cos x , y (0)=0; then 1+y((π/6))+(√3/2) y((π/3))+(1/√2) y((π/4)) is equal to
Q. If
y
=
y
(
x
)
is the solution of the equaiton
e
sin y
cos
y
d
x
d
y
+
e
sin y
cos
x
=
cos
x
,
y
(
0
)
=
0
; then
1
+
y
(
6
π
)
+
2
3
y
(
3
π
)
+
2
1
y
(
4
π
)
is equal to
2258
211
JEE Main
JEE Main 2021
Probability - Part 2
Report Error
Answer:
1
Solution:
Put
e
siny
=
t
⇒
e
s
i
n
y
cos
y
d
x
d
y
=
d
x
d
t
⇒
D
.
E
is
d
x
d
t
+
t
cos
x
=
cos
x
I
.
F
.
=
e
∫
c
o
s
x
d
x
=
e
s
i
n
x
⇒
solution is
t
.
e
s
i
n
x
=
∫
cos
x
e
s
i
n
x
⇒
e
s
i
n
y
e
s
i
n
x
=
e
s
i
n
x
+
c
∵
x
=
0
,
y
=
0
⇒
c
=
0
⇒
e
s
i
n
y
=
1
⇒
y
=
0
⇒
1
+
y
(
6
π
)
+
2
3
y
(
3
π
)
+
2
1
y
(
4
π
)
=
1