xdxdy+2y=xex dxdy+x2y=ex I.F.=x2 y.xx2=∫x2exdx =∫ex(x2+2x−2x−2+2)dx yx2=ex(x2−2x+2)+c y(1)=0 0=e(1+0)+c c=−e z(x)=x2y(x)−ex =ex(x2−2x+2)−e−ex =ex(x−1)2−e dxdz=ex⋅2(x−1)+ex(x−1)2=0 xx(x−1)(2+x−1)=0 ex(x−1)(x+1)=0 x=−1,1 x=−1 local maxima. Then maximum value is z(−1)=e4−e