Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If y = y(x) is the solution of the differential equation, ey ((dy/dx)-1) = ex such that y(0) = 0, then y (1) is equal to :
Q. If
y
=
y
(
x
)
is the solution of the differential equation,
e
y
(
d
x
d
y
−
1
)
=
e
x
such that
y
(
0
)
=
0
, then
y
(
1
)
is equal to :
4403
200
JEE Main
JEE Main 2020
Differential Equations
Report Error
A
l
o
g
e
2
0%
B
2
e
0%
C
2
+
l
o
g
e
2
14%
D
1
+
l
o
g
e
2
86%
Solution:
e
y
(
d
x
d
y
−
1
)
=
e
y
=
e
x
, Let
e
y
=
t
⇒
e
y
d
x
d
y
=
d
x
d
t
d
x
d
t
−
t
=
e
x
I
.
F
=
e
∫
−
d
x
=
e
−
x
t
e
−
x
=
x
+
c
⇒
e
y
−
x
=
x
+
c
y
(
0
)
=
0
⇒
c
=
1
e
y
−
x
=
x
+
1
⇒
y
(
1
)
=
1
+
l
o
g
e
2