Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If y = y ( x ) is the solution of the differential equation, ( dy / d x )+2 y tan x = sin x , y ((π/3))=0, then the maximum value of the function y ( x ) over R is equal to :
Q. If
y
=
y
(
x
)
is the solution of the differential equation,
d
x
d
y
+
2
y
tan
x
=
sin
x
,
y
(
3
π
)
=
0
, then the maximum value of the function
y
(
x
)
over
R
is equal to :
2682
185
JEE Main
JEE Main 2021
Differential Equations
Report Error
A
8
B
2
1
C
−
4
15
D
8
1
Solution:
d
x
d
y
+
2
y
tan
x
=
sin
x
I
⋅
F
1
=
e
∫
2
t
a
n
x
d
x
=
e
2
t
l
n
s
e
c
x
I
⋅
F
.
=
sec
2
x
y
⋅
(
sec
2
x
)
=
∫
sin
x
⋅
sec
2
x
d
x
y
⋅
(
sec
2
x
)
=
∫
sec
x
tan
x
d
x
y
⋅
(
sec
2
x
)
=
sec
x
+
C
x
=
3
π
;
y
=
0
⇒
C
=
−
2
⇒
y
=
s
e
c
2
x
s
e
c
x
−
2
=
cos
x
−
2
cos
2
x
y
=
t
−
2
t
2
⇒
d
t
d
y
=
1
−
4
t
=
0
⇒
t
=
4
1
∴
max
=
4
1
−
8
1
=
8
2
−
1
=
8
1