Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If y = y ( x ) is the solution of the differential equation 2 x2 (d y/d x)-2 x y+3 y2=0 such that y(e)=(e/3), then y(1) is equal to
Q. If
y
=
y
(
x
)
is the solution of the differential equation
2
x
2
d
x
d
y
−
2
x
y
+
3
y
2
=
0
such that
y
(
e
)
=
3
e
, then
y
(
1
)
is equal to
633
141
JEE Main
JEE Main 2022
Differential Equations
Report Error
A
3
1
25%
B
3
2
75%
C
2
3
0%
D
3
0%
Solution:
d
x
d
y
−
x
y
=
−
2
3
(
x
y
)
2
y
=
vx
v
2
d
v
=
−
2
x
3
d
x
−
v
1
=
−
2
3
ln
∣
x
∣
+
C
−
y
x
=
2
−
3
ln
∣
x
∣
+
C
x
=
e
,
y
=
3
e
C
=
−
2
3
When
x
=
1
,
y
=
3
2