Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If y = y ( x ) is the solution of the differential equation (1+e2 x) (d y/d x)+2(1+y2) ex=0 and y(0)=0, then 6(y prime(0)+(y( log e √3))2) is equal to:
Q. If
y
=
y
(
x
)
is the solution of the differential equation
(
1
+
e
2
x
)
d
x
d
y
+
2
(
1
+
y
2
)
e
x
=
0
and
y
(
0
)
=
0
, then
6
(
y
′
(
0
)
+
(
y
(
lo
g
e
3
)
)
2
)
is equal to:
990
172
JEE Main
JEE Main 2022
Differential Equations
Report Error
A
2
33%
B
-2
33%
C
-4
33%
D
-1
0%
Solution:
1
+
y
2
d
y
+
1
+
e
2
x
2
e
x
d
x
=
0....
(i)
on integration
tan
−
1
y
+
2
tan
−
1
e
x
=
c
y
(
0
)
=
0
so,
C
=
2
π
⇒
tan
−
1
y
+
2
tan
−
1
e
x
=
4
π
from eq.(i),
(
d
x
d
y
)
x
=
0
=
−
1
ar
g
y
(
ln
3
)
=
−
3
1
6
[
y
′
(
0
)
+
(
y
(
ln
3
)
2
]
=
6
[
−
1
+
3
1
]
=
−
4