Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If y=y(x) is solution of differential equation (d y/d x)=-x sin x ; y(0)=0, then
Q. If
y
=
y
(
x
)
is solution of differential equation
d
x
d
y
=
−
x
sin
x
;
y
(
0
)
=
0
, then
111
111
Differential Equations
Report Error
A
y
>
0
if
x
∈
(
2
−
π
,
0
)
.
B
y
<
0
if
x
∈
(
2
−
π
,
0
)
.
C
number of inflection points of
y
=
y
(
x
)
in
(
0
,
2
π
)
is 0 .
D
d
x
2
d
2
y
+
y
=
−
2
sin
x
Solution:
d
y
=
−
x
sin
x
⋅
d
x
y
=
x
cos
x
−
sin
x
+
c
y
=
x
cos
x
−
sin
x
{
Θ
c
=
0
}
=
cos
x
(
x
−
tan
x
)
y
′′
=
x
cos
x
−
sin
x
=
−
(
x
cos
x
+
sin
x
)
<
0
in
(
0
,
2
π
)
⇒
No inflection point.