Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $y=y(x)$ is solution of differential equation $\frac{d y}{d x}=-x \sin x ; y(0)=0$, then

Differential Equations

Solution:

$ d y=-x \sin x \cdot d x $
$y=x \cos x-\sin x+c$
$y=x \cos x-\sin x \{\Theta c=0\} $
$=\cos x(x-\tan x) $
$y^{\prime \prime}=x \cos x-\sin x=-(x \cos x+\sin x)<0 \text { in }\left(0, \frac{\pi}{2}\right)$
$\Rightarrow \text { No inflection point. }$