Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If y(x) satisfies the differential equation y' - y tan x = 2x secx and y(0) = 0, then
Q. If
y
(
x
)
satisfies the differential equation
y
′
−
y
t
an
x
=
2
x
sec
x
and
y
(
0
)
=
0
, then
1862
200
AIEEE
AIEEE 2012
Report Error
A
y
(
4
π
)
=
8
2
π
2
B
y
′
(
4
π
)
=
18
π
2
C
y
(
3
π
)
=
9
π
2
D
y
′
(
3
π
)
=
3
4
π
+
3
3
2
π
2
Solution:
d
x
d
y
−
y
tan
x
=
2
x
sec
x
cos
x
d
x
d
y
+
(
−
sin
x
)
y
=
2
x
d
x
d
(
y
cos
x
)
=
2
x
y
(
x
)
cos
x
=
x
2
+
c
,
where
c
=
0
since
y
(
0
)
=
0
when
x
=
4
π
,
y
(
4
π
)
=
8
2
π
2
,
when
x
=
3
π
,
y
(
3
π
)
=
9
2
π
2
when
x
=
4
π
,
y
′
(
4
π
)
=
8
2
π
2
+
2
π
when
x
=
3
π
,
y
′
(
3
π
)
=
3
3
2
π
2
+
3
4
π