218
96
Continuity and Differentiability
Report Error
Solution:
y=x(lnx)ln(lnx) λny=(λnx)λn(λmx)⋅λnx λn(λn)=λn(λnx)⋅λn(λnx)+λn(λnx) λny1⋅y1dxdy=λnx2λn(λnx)⋅x1+xλnx1 =xλnx2λn(λnx)+1 ∴dxdy=xy⋅λnxλny(2λn(λnx)+1)⇒D
Substituting the value of lny from (1) dxdy=xy(λnx)λn(λnx)(2λn(λnx)+1)⇒B