Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If y(x) is the solution of the differential equation (x+2) (dy/dx) = x2+4x-9, x ≠ -2 and y(0) = 0, then y( - 4) is equal to :
Q. If
y
(
x
)
is the solution of the differential equation
(
x
+
2
)
d
x
d
y
=
x
2
+
4
x
−
9
,
x
=
−
2
and
y
(
0
)
=
0
, then
y
(
−
4
)
is equal to :
3077
178
JEE Main
JEE Main 2015
Differential Equations
Report Error
A
0
54%
B
1
11%
C
-1
26%
D
2
9%
Solution:
(
x
+
2
)
d
x
d
y
=
x
2
+
4
x
−
9
x
=
−
2
d
x
d
y
=
x
+
2
x
2
+
4
x
−
9
d
y
=
x
+
2
x
2
+
4
x
−
9
d
x
∫
d
x
=
∫
x
+
2
x
2
+
4
x
−
9
d
x
y
=
∫
(
x
+
2
−
x
+
2
13
)
d
x
y
=
∫
(
x
+
2
)
d
x
−
13
∫
x
+
2
1
d
x
y
−
2
x
2
+
2
x
−
13
l
o
g
∣
x
+
2∣
+
c
Given that
y
=
(
0
)
=
0
0
=
−
13
lo
g
2
+
c
y
=
2
x
2
+
2
x
−
13
lo
g
∣
x
+
2∣
+
13
lo
g
2
y
(
−
4
)
=
8
−
8
−
13
lo
g
2
+
13
lo
g
2
=
0