Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If y(x) is a solution of (d y/d x)-(x y/1 + x)=(1/1 + x) and y(0)=-1 , then the value of y(2) is
Q. If
y
(
x
)
is a solution of
d
x
d
y
−
1
+
x
x
y
=
1
+
x
1
and
y
(
0
)
=
−
1
, then the value of
y
(
2
)
is
1213
141
NTA Abhyas
NTA Abhyas 2022
Report Error
A
−
2
1
B
−
3
1
C
−
4
1
D
−
5
1
Solution:
I.F.
=
e
−
∫
1
+
x
x
d
x
=
e
−
∫
x
+
1
x
+
1
−
1
d
x
=
e
−
x
+
l
n
∣
(
x
+
1
)
∣
=
e
−
x
⋅
∣
(
x
+
1
)
∣
y
⋅
∣
x
+
1
∣
e
−
x
=
∫
x
+
1
∣
x
+
1
∣
e
−
x
d
x
+
c
y
⋅
∣
(
x
+
1
)
∣
e
−
x
=
−
x
+
1
∣
x
+
1
∣
e
−
x
+
c
⇒
y
=
−
x
+
1
1
+
∣
x
+
1
∣
c
e
x
x
=
0
,
y
=
−
1
⇒
−
1
=
−
1
+
c
⇒
c
=
0
⇒
y
=
−
1
+
x
1
y
(
2
)
=
−
3
1