Q.
If y=x5(cos(lnx)+sin(lnx)), then find the value of (a+b) in the relation x2y2+axy1+by=0.
197
91
Continuity and Differentiability
Report Error
Answer: 17
Solution:
We have dxdy=5x4(cos(lnx)+sin(lnx))+x5(x−sin(lnx)+xcos(lnx)), ⇒x1=5y+x5(cos(lnx)−sin(lnx)) ⇒xy2+y1=5y1+5x4(cos(lnx)−sin(lnx))+x5(x−sin(lnx)−xcos(lnx)) ⇒x2y2+xy1=5xy1+5x5(cos(lnx)−sin(lnx))−x5(sin(lnx)+cos(lnx)) ⇒x2y2−4x1=5(x1−5y)−y ⇒x2y2−4xy1=5xy1−26y ⇒x2y2−9xy1+26y=0≡x2y2+axy1+by=0 ∴a=−9 and b=26 Hence (a+b)=17