2714
210
Continuity and Differentiability
Report Error
Solution:
Since, y=(x+1+x2)n
On differentiating w.r.t.x, we get dxdy=n(x+1+x2)n−1⋅(1+21+x22x) ⇒dxdy=1+x2n(x+1+x2)n ⇒(1+x2)(dxdy)2=n2y2
Again differentiating w.r.t. x, we get (1+x2)⋅2dxdy⋅dx2d2y+2x(dxdy)2 =n22ydxdy ⇒(1+x2)dx2d2y+xdxdy =n2y