Given, y=(tan−1x)2
On differentiating both sides w.r.t. x, we get dxdy=2(tan−1x)×dxd(tan−1x) ⇒dxdy=1+x22tan−1x (1+x2)dxdy=2tan−1x
Again, differentiating both sides w.r.t. x, we get (1+x2)dxd(dxdy)+dxdydxd(1+x2) =2dxd(tan−1x) ⇒(1+x2)dx2d2y+dxdy(0+2x)=1+x22 ⇒(1+x2)2dx2d2Y+2x(1+x2)dxdy=2
or (1+x2)2y2+2x(1+x2)y1=2