We have, y=(tan−1x)2
On differentiating w.r.t. x, we get dxdy=1+x22tan−1x ⇒(1+x2)dxdy=2tan−1x
On squaring both sides, we get (1+x2)2(dxdy)2=4(tan−1x)2 ⇒(1+x2)2(dxdy)2=4y[∵y=(tan−1x)2]
Again, differentiating w.r.t.x, we get (1+x2)2(2dxdy⋅dx2d2y)+2(1+x2)(2x)(dxdy)2=4dxdy
On dividing both sides by 2dxdy,
we get (1+x2)2(dx2d2y)+2x(1+x2)dxdy=4