We have, y=tan−1{1+1−x2x}+sin{2tan−11+x1−x}
On substituting x=cos2θ, we get y=tan−1{1+sin22θcos2θ} +sin{2tan−11+cos2θ1−cos2θ} ⇒y=tan−1{1+sin2θcos2θ} +sin{2tan−12cos2θ2sin2θ} ⇒y=tan−1{(cosθ+sinθ)2cos2θ−sin2θ} +sin{2tan−1(tanθ)} ⇒y=tan−1{cosθ+sinθcosθ−sinθ}+sin2θ ⇒y=tan−1{1+tanθ1−tanθ}+sin2θ ⇒tan(4π−θ))+sin2θ ⇒y=tan−1(tan(4π−θ))+sin2θ ⇒y=4π−21cos−1x+1−x2 [∵sin2θ=1−cos22θ]
Now, on differentiating both sides w.r.t. x, we get dxdy=21⋅1−x21+21−x21(−2x) =21−x21−2x