Given, y=tan−1[12cosx+5sinx5cosx−12sinx] =tan−1[1+125tanx125−tanx]
[divide by 12cosx in denominator and numerator] =tan−1(125)−tan−1(tanx) y=tan−1(125)−x
On differentiating both sides w.r.t. x, we get dxdy=dxd{tan−1(125)}−dxd(x)=0−1 ∴dxdy=−1